Small Scale Wastewater The View from the Trenches

Baynes Sound/ Lambert Channel EcoForum

December 1, 2022

Steven M. Carballeira, P. Geo.

Hydrogeology Studies
Well/Soil Evaluations
Wastewater System Designs
Instructor for ROWP Course

Current State of Small Scale Wastewater Industry

- Overall authority is Ministry of Health (< 22.7 m³/day)
- Systems can only <u>legally</u> be installed by a Registered Onsite Wastewater Practitioner (ROWP) or under supervision of a P.Geo. or P.Eng. Or homeowner under supervision
- ROWPs Under authority of: Applied Science Technologists & Technicians of BC (ASTTBC). Currently, no inspections required.
- Some Regional Districts require filing before building permit, some do not.

Homeowners

- Homeowners by law must:
 - ensure system is planned, installed and maintained by an <u>authorized person</u>
 - keep records of maintenance for system
 - ensure their system does not create a health hazard
 - ensure their sewage is discharged into either a public system, a permitted holding tank or a private sewage system that is in compliance with the SSR

- They must be pushed to do any of these things.

Costs for Installation

- Vary from place to place and installer to installer
- Basic best case scenario \$12,000-\$15,000
- Depending on access, complexity, area, and size could be as high as \$50,000.
 Generally, around \$25,000
- If Professional needed, add 50%.

Contaminants of Concern

- Pathogens E.coli bacteria, viruses recently, Covid 19 tracking in wastewater
- <u>TDS and BOD₅</u> Total Dissolved Solids & Biochemical Oxygen Demand
- Nutrients such as nitrogen and phosphorus can cause algal blooms and anoxic zones within embayed waters
- Endocrine Disrupting Chemicals (EDCs) from pharmaceuticals, anti-bacterial soaps, etc. – have been found at low concentrations (ppb) to feminize fish near outfalls "concentration of 5ng /L caused total collapse of fish species (Kidd, 2007)"

Basic wastewater system

A quick tour of the building of a seepage bed dispersal field...

Excavate and scarify area of field

Place engineered sand

Place aggregate on top of sand

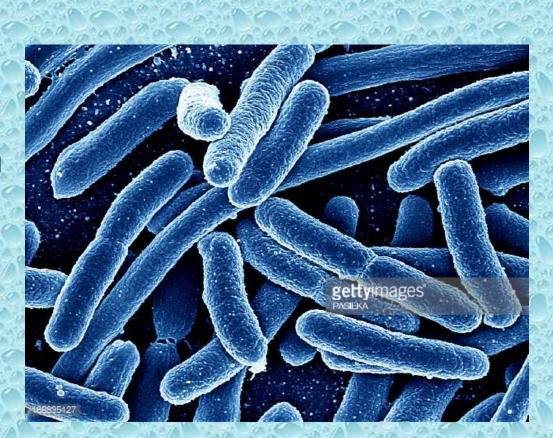
Place drilled piping

Cover piping with more aggregate

Cover piping with geotextile cloth

Backfill with sandy topsoil and done!

Trench system with sand below


Wastewater Treatment Levels

Depend on output concentrations of:

- 5 day biochemical oxygen demand
- Total Suspended Solids
- Pathogens/Viruses

Effluent from septic tank is usually:

- $BOD_5 = 150-300 \text{ ppm}$
- TSS = 50-80 ppm
- Fecal coliform = 10⁵-10⁷ CFU

TREATMENT LEVELS

 TYPE 1 – Septic tank treatment with effluent transferred to a dispersal field.

TYPE 1 EXAMPLES

TREATMENT LEVELS

TYPE 1 – Single use facility

When is higher level treatment needed?

- Poor soils
- High water table
- Environmentally sensitive area
- Lot size restraints
- Outfalls

 TYPE 2 – Septic tank, treatment plant followed by a dispersal field. Dispersal field size may be reduced by up to 30%

 TYPE 3 - Package treatment unit followed by a ultraviolet light unit to kill bacteria, or additional thickness of engineered sand. Septic field size can be 60% smaller. Design by Professional only.

Type 6 treatment – not allowed

In-Ground Effluent Treatment

- 30 metre setback for wells has no strict scientific basis
- Majority of bacterial pathogens are consumed within 10 metres of dispersal treatment field
- Nitrogen and phosphorus can be reduced within the treatment train BUT ARE MOBILE WITH GROUNDWATER.

Failure of ground-based system

- "Failure" by MoH definition is effluent breaking out at the surface. Failure is deemed a Health Hazard.
- When MOH identifies failure the property owner can be placed in a pump and haul mode until a repair has been carried out by an authorized person.

Failure of system outfall

- Real time Total Dissolved Solids meter alarm
- Weekly/Monthly sampling required by permit or registration fails to meet requirements

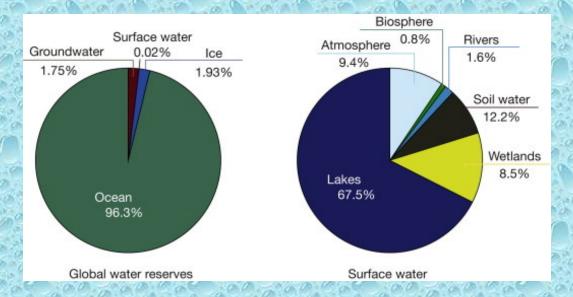
FAILURE

Failure

Failure with overland flow

Trench failure in perforated pipe This is why we pump septic tanks

Height of perforations


Failure of a different type

Outfalls and Dispersal to Ground

Global Water Distribution

Surface Water Distribution

Simple Hydrologic Cycle

Water in the Biosphere

From Table 1-1 in Wetzel	Volume (Thousands of km³)	% of Total	Renewal Time
Oceans	1,370,000.0	97.61000	3100 y
Glaciers	29,000.0	2.08000	16,000 y
Groundwater	4,000.0	0.29000	300 y
Freshwater lakes	125.0	0.00900	1-100 y
Saline lakes	104.0	0.00800	10-1000 у
Soil moisture	67.0	0.00500	280 d
Rivers	1.2	0.00009	12-20 d
Atmosphere	14.0	0.00090	9 d

Renewal time = residence time

Outfall

- Single use of groundwater
- Even with dilution, can contaminate local marine waters
- Late stage warnings of treatment failure
- Mining groundwater, lengthy, non-human scale renewal time back to aquifer

In-ground Dispersal

- Not-quite-infinite reuse of groundwater
- Soil is the best treatment for polishing effluent
- Early warnings of potential failure
- Human scale renewal time back to aquifer storage

Areas of Overall Concern

- Illegal systems.
- New rural homeowners who don't care where the water comes from or where it goes
- Old systems that are failing without surfacing effluent. "Shortcutting" subsurface flow to beach or other down gradient location
- Ground based systems for large flows require large areas of empty land

Education Opportunities

- Inform public concerning signs of deteriorating systems, importance of regular maintenance
- Incentivization of maintenance by homeowner grants for upgrades and replacement systems
- Maintenance regulation bylaws, i.e. CRD
- Inform public regarding illegal systems and non-ROWPS installing systems

More Education Opportunities

- Inform realtors to recommend wastewater system inspections/feasibility before property purchase
- Research when outfalls are not strictly necessary
- Inform RDs/municipalities to require filings for permits

At the end of the day, this is what matters...

